
1

Object-Oriented
Software Design (lecture 7)

2

● Basic Mechanisms:
● Objects:

● A real-world entity.
● A system is designed as a set of

interacting objects.
● Consists of data (attributes) and

functions (methods) that operate on
data

● Hides organization of internal information
(Data abstraction)

● Examples: an employee, a book etc.

Object-oriented Concepts

3

Object-oriented Concepts

Data

Objec
t

m
8

m
7

m
6
m
5

m
4

m
3

m
2

m
1

Model of an
object

mi are
methods
of the object

4

● Class:
● Instances are objects
● Template for object creation
● Examples: set of all employees, different

types of book

Object-oriented Concepts

5

● Methods and message:
● Operations supported by an object
● Means for manipulating the data of

other objects
● Invoked by sending message
● Examples: calculate_salary, issue-

book, member_details, etc.

Object-oriented Concepts

6

● Inheritance:
● Allows to define a new class (derived

class) by extending or modifying existing
class (base class)

● Represents Generalization-
specialization relationship

● Allows redefinition of the existing
methods (method overriding)

Object-oriented Concepts

7

● Multiple Inheritance:
● Subclass can inherit attributes and

methods from more than one base class

● Multiple inheritance is represented by
arrows drawn from the subclass to each
of the base classes

Object-oriented Concepts

8

Object-oriented Concepts

LibraryMember

ResearchPostGradUnderGrad

StaffStudentsFaculty

 Base
Class

Derived

Classes

LibraryMember

ResearchPostGradUnderGrad

StaffStudentsFaculty

 Base
Class

Multiple

Inherita
nce

Abstraction

● Consider aspects relevant for certain
purpose

● Suppress non-relevant aspects
● Supported at two-levels i.e. class

level where base class is an
abstraction and object level where
object is a data abstraction entity.

9

10

● Encapsulation:
● Objects communicate outside world

through messages
● Objects data encapsulated within its

methods

Object-oriented Concepts

11

Object-oriented Concepts

 Methods

Data

m
3

m
2

m
1

m
4

m
5

m
6

Concept of
encapsulation

12

● Polymorphism:

● Denotes to poly (many) morphism
(forms)

● Same message result in different
actions by different objects (static
binding)

Object-oriented Concepts

13

● Composite objects:
● Object containing other objects

Object-oriented Concepts

14

● Code and design reuse
● Increased productivity
● Ease of testing & maintenance
● Better understandability
● Its agreed that increased

productivity is chief advantage

Advantages
of Object-oriented design

15

● UML is a modelling language
● Not a system design or

development methodology
● Used to document object-

oriented analysis and design
● Independent of any specific

design methodology

Object
modelling using UML

16

● Model is required to capture only
important aspects

● UML a graphical modelling tool, easy
to understand and construct

● Helps in managing complexity

Why UML is required?

17

● Nine diagrams to capture
different views of a system

● Provide different perspectives of
the software system

● Diagrams can be refined to get
the actual implementation of the
system

UML diagrams

18

● Views of a system
● User’s view
● Structural view
● Behavioral view
● Implementation view
● Environmental view

UML diagrams

19

UML diagrams

User’s View
- Use Case

Diagram

Structural
View

- Class Diagram
- Object Diagram

Implementation
View

- Component Diagram

Environmental
View

- Deployment Diagram

Behavioural View
- Sequence Diagram
- Collaboration Diagram

 - State-chart Diagram
 - Activity Diagram

Diagrams and views in
UML

20

● NO
● Use case model, class diagram and

one of the interaction diagram for a
simple system

● State chart diagram in case of many
state changes

● Deployment diagram in case of large
number of hardware components

Are all views required?

21

Use Case model

● Consists of set of “use cases”
● An important analysis and design

artifact
● Other models must confirm to this

model
● Not really an object-oriented model
● Represents a functional or process

model

22

Use Cases

● Different ways in which system can be used
by the users.

● Corresponds to the high-level requirements.
● Represents transaction between the user

and the system.
● Define behavior without revealing internal

structure of system.

23

Use Cases

● Normally, use cases are independent
of each other

● Implicit dependencies may exist
● Example: In Library Automation

System, renew-book & reserve-book
are independent use cases. But in
actual implementation of renew-book,
a check is made to see if any book has
been reserved using reserve-book

24

Example of
Use Cases

● For library information system
● issue-book
● Query-book
● Return-book
● Create-member
● Add-book, etc.

25

Representation of
Use Cases

● Represented by use case diagram
● Use case is represented by ellipse
● System boundary is represented by

rectangle
● Users are represented by stick

person icon (actor)
● Communication relationship

between actor and use case by line
● External system by stereotype

26

Example of
Use Cases

Use case
model

Tic-tac-toe
game

Play
Move

Playe
r

27

Factoring
Use Cases

● Complex use cases need to be
factored into simpler use cases

● Represent common behavior across
different use cases

● Three ways of factoring
● Generalization

● Includes

● Extends

28

Factoring Using
Generalization

Pay membership
fee

Pay through library
pay card

Pay through
credit card

Use case
generalization

29

Factoring Using
Includes

Base
use case

Use case inclusion

Common
 use
case

<<include>
>

Base
use case

Base
use case

Base
use case

Base
use case

Base
use case

<<include>
>

<<include>
>

<<include>
>

<<include>
>

Paralleling
model

30

Factoring Using
Extends

Base
use case

Use case extension

Common
 use
case

<<extends>
>

31

Class diagram

● Describes static structure of a system
● Main constituents are classes and

their relationships:
● Aggregation

● Association

● Various kinds of dependencies

32

Class diagram

● Entities with common features, i.e.
attributes and operations

● Classes are represented as solid
outline rectangle with compartments

● Compartments for name, attributes
& operations

● Attribute and operation compartment
are optional for reuse purpose

33

 Example of
Class diagram

Different representations of the LibraryMember
class

LibraryMember
Member Name
Membership Number
Address
Phone Number
E-Mail Address
Membership Admission
Date
Membership Expiry Date
Books Issued
issueBook();
findPendingBooks();
findOverdueBooks();
returnBook();
findMembershipDetails();

LibraryMember
Member Name
Membership Number
Address
Phone Number
E-Mail Address
Membership Admission
Date
Membership Expiry Date
Books Issued

LibraryMember

34

 Association Relationship

Association between two
classes

Library
Member Book

1 *borrowed
by

35

Aggregation Relationship

● Represent a whole-part relationship
● Represented by diamond symbol at

the composite end
● Cannot be reflexive(i.e. recursive)
● Not symmetric
● It can be transitive

36

 Aggregation Relationship

Representation of
aggregation

Document Line
1 *

Paragraph
1 *

37

 Composition Relationship

Representation of
composition

Order
1 *

Item

● Life of item is same as the order

38

 Class Dependency

Representation of dependence between
class

Dependent Class Independent Class

39

 Object diagram

Different representations of the LibraryMember
object

LibraryMember

Mritunjay
B10028
C-108, Laksmikant Hall
1119
Mrituj@cse
25-02-04
25-03-06
NIL

IssueBook();
findPendingBooks();
findOverdueBooks();
returnBook();
findMembershipDetails();

LibraryMember

Mritunjay
B10028
C-108, Laksmikant Hall
1119
Mrituj@cse
25-02-04
25-03-06
NIL

LibraryMember

40

Interaction diagram

● Models how groups of objects
collaborate to realize some behaviour

● Typically each interaction diagram
realizes behaviour of a single use case

41

Interaction diagram

● Two kinds: Sequence &
Collaboration

● Two diagrams are equivalent but
portrays different perspective

● These diagram play a very important
role in the design process

42

Sequence diagram

● Shows interaction among objects as two-
dimensional chart

● Objects are shown as boxes at top

● Objects existence are shown as
dashed lines (lifeline)

● Objects activeness, shown as
rectangle on lifeline

43

Sequence diagram

● Messages are shown as arrows
● Message labelled with message name
● Message can be labelled with

control information
● Two types of control information:

condition ([]) & an iteration (*)

44

Example of
Sequence diagram

:Library
Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book :Library
Member

renewBoo
kdisplayBorrowin

g selectBook
s

[reserved
]
apolog
y

confir
m

find
MemberBorrowing

bookSelecte
d *

find

updat
e

[reserved
] apolog
y

confirm

updateMemberBorrowin
g

Sequence Diagram for the renew book use
case

45

Collaboration diagram

● Shows both structural and behavioural
aspects

● Objects are collaborator, shown as boxes
● Messages between objects shown as a

solid line
● Message is shown as a labelled arrow

placed near the link
● Messages are prefixed with sequence

numbers to show relative sequencing

46

Example of
Collaboration diagram

:Library
Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book

:Library
Member

1: renewBook

3: display
Borrowin
g

4:
selectBooks

[reserved
]

8:
apology

12:
confirm

2:
findMemberBorrowing

5: book
Selecte
d

6: *
find

9:
update

[reserved
]

7:
apology

10: confirm

updateMemberBorrowin
g

Collaboration Diagram for the renew book use
case

47

Example 1: Tic-Tac-Toe
Computer Game
● A human player and the computer make

alternate moves on a 3 3 square.
● A move consists of marking a previously

unmarked square.
● The user inputs a number between 1

and 9 to mark a square
● Whoever is first to place three

consecutive marks along a straight line
(i.e., along a row, column, or diagonal)
on the square wins.

48

Example 1: Tic-Tac-Toe
Computer Game
● As soon as either of the human player or

the computer wins,
● a message announcing the winner should be

displayed.
● If neither player manages to get three

consecutive marks along a straight line,
● and all the squares on the board are filled up,

● then the game is drawn.
● The computer always tries to win a

game.

49

Example 1: Use Case Model

Tic-tac-toe
game

Play
Move

Playe
r

50

Example 1: Sequence Diagram

:playMove
Boundary

:playMove
Controller :board

acceptMov
e

Sequence Diagram for the play move use
case

mov
e

checkMoveValidity

[invalidMove
]announceInvalidMov

e

[invalidMove
]announceInvalidMov

e
[game
over]announceResul

t
[game
over]announceResul

t

checkWinne
r

playMov
echeckWinne

r [game
over]announceResul

t

[game
over]announceResul

t getBoardPosition
s

displayBoardPosition
s

[game not
over]promptNextMov

e

51

Example 1: Class Diagram

Boar
d

int
position[9]
checkMove Validity
checkResult
playMove

Controlle
r

announceInvalidMov
e
announceResult

PlayMoveBoundar
y

announceInvalidMov
e
announceResult
displayBoard

52

Example 2: Supermarket Prize
Scheme

● Supermarket needs to develop
software to encourage regular
customers.

● Customer needs to supply his
residence address, telephone
number, and the driving licence
number.

● Each customer who registers is
assigned a unique customer
number (CN) by the computer.

53

Example 2: Supermarket Prize
Scheme

● A customer can present his CN to
the staff when he makes any
purchase.

● The value of his purchase is
credited against his CN.

● At the end of each year, the
supermarket awards surprise gifts
to ten customers who make
highest purchase.

54

Example 2: Supermarket Prize
Scheme

● Also, it awards a 22 carat gold coin
to every customer whose
purchases exceed Rs. 10,000.

● The entries against the CN are
reset on the last day of every year
after the prize winner’s lists are
generated.

55

Example 2: Use Case Model

Supermarket
Prize scheme

register
customerCustome

r

register
sales

select
winners

Sales
Clerk

Manage
r

Cler
k

56

Example 2: Sequence Diagram for

the Select Winners Use Case

:
SelectWinn

er
Boundary

:
SelectWinn

er
Controller

:Sales
History

:Sales
Record

:Customer
Register

Select
Winner

s

Sequence Diagram for the select winners use
case

:Customer
Record

SelectWinner
s

announce
s

SelectWinner
s *computeSale

s

*brows
e

[for each
winner]find

WinnerDetails
[for each

winner]brows
e

57

Example 2: Sequence Diagram for

the Register Customer Use Case

:
SelectWinn

er
Boundary

:
SelectWinn

er
Controller

:Customer
Register

registe
r

Sequence Diagram for the register customer use
case

:Customer
Record

[duplicate
]

displayCI
N

*matc
h

creat
e

registe
r

:Customer
Record

checkDuplicat
e

showErro
rgenerateCI

N

registe
r

58

Example 2: Sequence Diagram for
the Register Sales Use Case

:Register
Sales

Boundary

:Sales
History

:Sales
Record

registerSale
s

Sequence Diagram for the register sales use case

RegisterSale
s

creat
e

confir
m

:Register
Sales

Controller

registerSale
s

confir
m

59

Example 2: Sequence Diagram for
the Register Sales Use Case

:Register
Sales

Boundary

:Sales
History

:Sales
Record

registerSale
s

Refined Sequence Diagram for the register sales use
case

RegisterSale
s

creat
e

confir
m

60

Example 1: Class Diagram

SalesHistor
y

selectWinner
s
registerSales

SalesRecord
s

computerSale
s
browse
create

CustomerRegiste
r

findWinnerDetail
s
register

salesDetail
s

CustomerRecor
d

browse
checkDuplicat
e
create

name
addres
s

1

*

1

*

61

Summary

● We discussed object-oriented
concepts
● Basic mechanisms: Such as objects,

class, methods, inheritance etc.
● Key concepts: Such as abstraction,

encapsulation, polymorphism,
composite objects etc.

62

Summary

● We discussed an important OO language
UML
● Its origin, as a standard, as a model

● Use case representation, its factorisation
such as generalization, includes and extends

● Different diagrams for UML representation
● In class diagram we discussed some

relationships association, aggregation,
composition and inheritance

63

Summary

● Some more diagrams such as
interaction diagrams (sequence and
collaboration), activity diagrams,
state chart diagram

● We discussed OO software
development process and patterns
● In this we discussed some patterns

example and domain modelling

