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Object-Oriented
Software Design (lecture 7)
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● Basic Mechanisms:
● Objects:

● A real-world entity.
● A system is designed as a set of

interacting objects.
● Consists of data (attributes) and

functions (methods) that operate on
data

● Hides organization of internal information
(Data abstraction)

● Examples: an employee, a book etc.

Object-oriented Concepts
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Object-oriented Concepts
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● Class:
● Instances are objects
● Template for object creation
● Examples: set of all employees, different

types of book

Object-oriented Concepts
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● Methods and message:
● Operations supported by an object
● Means for manipulating the data of

other objects
● Invoked by sending message
● Examples: calculate_salary, issue-

book, member_details, etc.

Object-oriented Concepts
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● Inheritance:
● Allows to define a new class (derived

class) by extending or modifying existing
class (base class)

● Represents Generalization-
specialization relationship

● Allows redefinition of the existing
methods (method overriding)

Object-oriented Concepts
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● Multiple Inheritance:
● Subclass can inherit attributes and

methods from more than one base class

● Multiple inheritance is represented by
arrows drawn from the subclass to each
of the base classes

Object-oriented Concepts
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Object-oriented Concepts
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Abstraction

● Consider aspects relevant for certain
purpose

● Suppress non-relevant aspects
● Supported at two-levels i.e. class

level where base class is an
abstraction and object level where
object is a data abstraction entity.

9
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● Encapsulation:
● Objects communicate outside world

through messages
● Objects data encapsulated within its

methods

Object-oriented Concepts
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Object-oriented Concepts
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● Polymorphism:

● Denotes to poly (many) morphism
(forms)

● Same message result in different
actions by different objects (static
binding)

Object-oriented Concepts
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● Composite objects:
● Object containing other objects

Object-oriented Concepts
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● Code and design reuse
● Increased productivity
● Ease of testing & maintenance
● Better understandability
● Its agreed that increased

productivity is chief advantage

Advantages
of Object-oriented  design
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● UML is a modelling language
● Not a system design or

development methodology
● Used to document object-

oriented analysis and design
● Independent of any specific

design methodology

Object
modelling using UML
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● Model is required to capture only
important aspects

● UML a graphical modelling tool, easy
to understand and construct

● Helps in managing complexity

Why UML is required?
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● Nine diagrams to capture
different views of a system

● Provide different perspectives of
the software system

● Diagrams can be refined to get
the actual implementation of the
system

UML diagrams
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● Views of a system
● User’s view
● Structural view
● Behavioral view
● Implementation view
● Environmental view

UML diagrams
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UML diagrams

User’s View
- Use Case

Diagram

Structural
View

-  Class Diagram
-  Object Diagram

Implementation
View

-  Component Diagram

Environmental
View

-  Deployment Diagram

Behavioural View
-  Sequence Diagram
-  Collaboration Diagram

        - State-chart Diagram
                 - Activity Diagram

Diagrams and views in
UML



20

● NO
● Use case model, class diagram and

one of the interaction diagram for a
simple system

● State chart diagram in case of many
state changes

● Deployment diagram in case of large
number of  hardware components

Are all views required?
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Use Case model

● Consists of set of “use cases”
● An important analysis and design

artifact
● Other models must confirm to this

model
● Not really an object-oriented model
● Represents a functional or process

model
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Use Cases

● Different ways in which system can be used
by the users.

● Corresponds to the high-level requirements.
● Represents transaction between the user

and the system.
● Define behavior without revealing internal

structure of system.



23

Use Cases

● Normally, use cases are independent
of each other

● Implicit dependencies may exist
● Example: In Library Automation

System, renew-book & reserve-book
are independent use cases. But in
actual implementation of renew-book,
a check is made to see if any book has
been reserved using reserve-book
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Example of
Use Cases

● For library information system
● issue-book
● Query-book
● Return-book
● Create-member
● Add-book, etc.
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Representation of
Use Cases

● Represented by use case diagram
● Use case is represented by ellipse
● System boundary is represented by

rectangle
● Users are represented by stick

person icon (actor)
● Communication relationship

between actor and use case by line
● External system by stereotype
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Example of
Use Cases

Use case
model

Tic-tac-toe
game

Play
Move

Playe
r
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Factoring
Use Cases

● Complex use cases need to be
factored into simpler use cases

● Represent common behavior across
different use cases

● Three ways of factoring
● Generalization

● Includes

● Extends
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Factoring Using
Generalization

Pay membership
fee

Pay through library
pay card

Pay through
credit card

Use case
generalization
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Factoring Using
Includes

Base
use case

Use case inclusion

Common
 use
case

<<include>
>

Base
use case

Base
use case

Base
use case

Base
use case

Base
use case

<<include>
>

<<include>
>

<<include>
>

<<include>
>

Paralleling
model
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Factoring Using
Extends

Base
use case

Use case extension

Common
 use
case

<<extends>
>
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Class diagram

● Describes static structure of a system
● Main constituents are classes and

their relationships:
● Aggregation

● Association

● Various kinds of dependencies



32

Class diagram

● Entities with common features, i.e.
attributes and operations

● Classes are represented as solid
outline rectangle with compartments

● Compartments for name, attributes
& operations

● Attribute and operation compartment
are optional for reuse purpose
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 Example of
Class diagram

Different representations of the LibraryMember
class

LibraryMember
Member Name
Membership Number
Address
Phone Number
E-Mail Address
Membership Admission
Date
Membership Expiry Date
Books Issued
issueBook( );
findPendingBooks( );
findOverdueBooks( );
returnBook( );
findMembershipDetails( );

LibraryMember
Member Name
Membership Number
Address
Phone Number
E-Mail Address
Membership Admission
Date
Membership Expiry Date
Books Issued

LibraryMember
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 Association Relationship

Association between two
classes

Library
Member Book

1 *borrowed
by
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Aggregation Relationship

● Represent a whole-part relationship
● Represented by diamond symbol at

the composite end
● Cannot be reflexive(i.e. recursive)
● Not symmetric
● It can be transitive
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 Aggregation Relationship

Representation of
aggregation

Document Line
1 *

Paragraph
1 *
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 Composition Relationship

Representation of
composition

Order
1 *

Item

● Life of item is same as the order
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 Class Dependency

Representation of dependence between
class

Dependent Class Independent Class
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 Object diagram

Different representations of the LibraryMember
object

LibraryMember

Mritunjay
B10028
C-108, Laksmikant Hall
1119
Mrituj@cse
25-02-04
25-03-06
NIL

IssueBook( );
findPendingBooks( );
findOverdueBooks( );
returnBook( );
findMembershipDetails( );

LibraryMember

Mritunjay
B10028
C-108, Laksmikant Hall
1119
Mrituj@cse
25-02-04
25-03-06
NIL

LibraryMember
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Interaction diagram

● Models how groups of objects
collaborate to realize some behaviour

● Typically each interaction diagram
realizes behaviour of a single use case
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Interaction diagram

● Two kinds: Sequence &
Collaboration

● Two diagrams are equivalent but
portrays different perspective

● These diagram play a very important
role in the design process
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Sequence diagram

● Shows interaction among objects as two-
dimensional chart

● Objects are shown as boxes at top

● Objects existence are shown as
dashed lines (lifeline)

● Objects activeness, shown as
rectangle on lifeline
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Sequence diagram

● Messages are shown as arrows
● Message labelled with message name
● Message can be labelled with

control information
● Two types of control information:

condition ([]) & an iteration (*)
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Example of
Sequence diagram

:Library
Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book :Library
Member

renewBoo
kdisplayBorrowin

g selectBook
s

[reserved
]
apolog
y

confir
m

find
MemberBorrowing

bookSelecte
d *

find

updat
e

[reserved
] apolog
y

confirm

updateMemberBorrowin
g

Sequence Diagram for the renew book use
case
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Collaboration diagram

● Shows both structural and behavioural
aspects

● Objects are collaborator, shown as boxes
● Messages between objects shown as a

solid line
● Message is shown as a labelled arrow

placed near the link
● Messages are prefixed with sequence

numbers to show relative sequencing
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Example of
Collaboration diagram

:Library
Boundary

:Library
Book
Renewal
Controller

:Library
Book
Register

:Book

:Library
Member

1: renewBook

3: display
Borrowin
g

4:
selectBooks

[reserved
]

8:
apology

12:
confirm

2:
findMemberBorrowing

5: book
Selecte
d

6: *
find

9:
update

[reserved
]

7:
apology

10: confirm

updateMemberBorrowin
g

Collaboration Diagram for the renew book use
case
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Example 1: Tic-Tac-Toe
Computer Game
● A human player and the computer make

alternate moves on a 3 3 square.
● A move consists of marking a previously

unmarked square.
● The user inputs a number between  1

and 9 to mark a square
● Whoever is  first to place three

consecutive marks along a straight line
(i.e., along a row, column, or diagonal)
on the square wins.
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Example 1: Tic-Tac-Toe
Computer Game
● As soon as either of the human player or

the computer wins,
● a message announcing the winner should be

displayed.
● If neither player manages to get three

consecutive marks along a straight line,
● and all the squares on the board are filled up,

● then the game is drawn.
● The computer always tries to win a

game.
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Example 1: Use Case Model

Tic-tac-toe
game

Play
Move

Playe
r
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Example 1: Sequence Diagram

:playMove
Boundary

:playMove
Controller :board

acceptMov
e

Sequence Diagram for the play move use
case

mov
e

checkMoveValidity

[invalidMove
]announceInvalidMov

e

[invalidMove
]announceInvalidMov

e
[game
over]announceResul

t
[game
over]announceResul

t

checkWinne
r

playMov
echeckWinne

r [game
over]announceResul

t

[game
over]announceResul

t getBoardPosition
s

displayBoardPosition
s

[game not
over]promptNextMov

e
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Example 1: Class Diagram

Boar
d

int
position[9]
checkMove Validity
checkResult
playMove

Controlle
r

announceInvalidMov
e
announceResult

PlayMoveBoundar
y

announceInvalidMov
e
announceResult
displayBoard
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Example 2: Supermarket Prize
Scheme

● Supermarket needs to develop
software to encourage regular
customers.

● Customer needs to supply his
residence address, telephone
number, and the driving licence
number.

● Each customer who registers is
assigned a unique customer
number (CN) by the computer.
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Example 2: Supermarket Prize
Scheme

● A customer can present his CN to
the staff when he makes any
purchase.

● The value of his purchase is
credited against his CN.

● At the end of each year, the
supermarket awards surprise gifts
to ten customers who make
highest purchase.
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Example 2: Supermarket Prize
Scheme

● Also, it awards a 22 carat gold coin
to every customer whose
purchases exceed Rs. 10,000.

● The entries against the CN are
reset on the last day of every year
after the prize winner’s lists are
generated.



55

Example 2: Use Case Model

Supermarket
Prize scheme

register
customerCustome

r

register
sales

select
winners

Sales
Clerk

Manage
r

Cler
k
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Example 2: Sequence Diagram for

the Select Winners Use Case

:
SelectWinn

er
Boundary

:
SelectWinn

er
Controller

:Sales
History

:Sales
Record

:Customer
Register

Select
Winner

s

Sequence Diagram for the select winners use
case

:Customer
Record

SelectWinner
s

announce
s

SelectWinner
s *computeSale

s

*brows
e

[for each
winner]find

WinnerDetails
[for each

winner]brows
e
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Example 2: Sequence Diagram for

the Register Customer Use Case

:
SelectWinn

er
Boundary

:
SelectWinn

er
Controller

:Customer
Register

registe
r

Sequence Diagram for the register customer use
case

:Customer
Record

[duplicate
]

displayCI
N

*matc
h

creat
e

registe
r

:Customer
Record

checkDuplicat
e

showErro
rgenerateCI

N

registe
r
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Example 2: Sequence Diagram for
the Register Sales Use Case

:Register
Sales

Boundary

:Sales
History

:Sales
Record

registerSale
s

Sequence Diagram for the register sales use case

RegisterSale
s

creat
e

confir
m

:Register
Sales

Controller

registerSale
s

confir
m
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Example 2: Sequence Diagram for
the Register Sales Use Case

:Register
Sales

Boundary

:Sales
History

:Sales
Record

registerSale
s

Refined Sequence Diagram for the register sales use
case

RegisterSale
s

creat
e

confir
m
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Example 1: Class Diagram

SalesHistor
y

selectWinner
s
registerSales

SalesRecord
s

computerSale
s
browse
create

CustomerRegiste
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findWinnerDetail
s
register

salesDetail
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CustomerRecor
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1

*

1
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Summary

● We discussed object-oriented
concepts
● Basic mechanisms: Such as objects,

class, methods, inheritance etc.
● Key concepts: Such as abstraction,

encapsulation, polymorphism,
composite objects etc.
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Summary

● We discussed an important OO language
UML
● Its origin, as a standard, as a model

● Use case representation, its factorisation
such as generalization, includes and extends

● Different diagrams for UML representation
● In class diagram we discussed some

relationships association, aggregation,
composition and inheritance
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Summary

● Some more diagrams such as
interaction diagrams (sequence and
collaboration), activity diagrams,
state chart diagram

● We discussed OO software
development process and patterns
● In this we discussed some patterns

example and domain modelling


